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AiIIIrId-ln the present investigation an analytical technique using chebyshev series has been used to
study the nonlinear dynamic response of orthotropic circular plates for the both clamped as well as simply
supported edge conditions. The inftuence of orthotropic parameter fl- on the laJ'Ile amplitude response of
circular plates. under three types of dynamic loadings namely. step function. sinusoidal and N shaped
pulse. has been studied. It is shown that accurate results can be obtained using five terms chebyshev series
expansion which is very unlikely in the case of conventional power or trigonometric series.
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plate radius and thickness
transverse deflection and stress function
elastic constants
ratio of elastic constant
load and time
Poison's ratio and density
stress components in radial and tangential directions
strain components in radial and tangential direction
nondimensional radius
nondimensional transverse deflection and stress function
nondimensionalload and time
chebyshev polynomials in range 0.. p .. I
number of terms in the series

coefficient of chebyshev series

step of marching variable
order of differentiation
first term of the expansion to be halved
Houbolt coefficient
Taylor series coefficients.

I. INTRODUCTION

The high diversity and severity of demands as well as of operating conditions particularly in the
field of pressure vessels, space and deep water technology imposed on structural elements like
plates and shells by today's technology have resulted in the need of nonlinear analysis of these
elements made of new materials, such as reinforced plastics and composite materials. Non­
linearity arises due to the large deformation of structures. To treat such cases, the classical
linear theory of plates can not be applied adequately and the use of nonlinear theory is quite
inevitable. This way it is obvious that this accounts for the wide interest in the engineering and
scientific community arisen during the last two decades in substantiating, developing and
generalising theoretical methods for the rational analysis of plates and shells. Nonlinear static
analysis of rectangular and elliptical orthotropic plates has been carried out by Chia et al. [J , 2]
and Basu et al. [3]. Static post buckling behaviour of orthotropic annular plates has been studied
by Uthegennant[4] and Huang[5].

As a consequence of the impetuous development of modem aircraft and space technology,
more attention is being paid to the study of dynamic behaviour of elastic structures in
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conditions of mutual interaction of elastic and inertia forces than the static analysis of
structures. The amount of literature available pertaining to the large amplitude response of
orthotropic structures is quite limited. Nonlinear dynamic analysis of orthotropic shells has
been carried out by Stephens [6] using finite difference and Nowinski [7, 8] using Galerkin
techniques. Nonlinear response of rectangular plates is studied by Alwar et al. [9] using rate
form linearization technique. Large amplitude vibrations of orthotropic circular plate have been
studied by Huang[lO, II] using Ritz·Kantorovich method.

The purpose of this investigation is to present an analytical approach to the study of
nonlinear static and dynamic response of orthotropic circular plates. The governing nonlinear
differential equations are expressed in terms of stress function and transverse deflection. These
equations have been integrated space-wise using chebyshev polynomials[12, 13] and time-wise
using implicit Houbolt scheme[14] and the influence of orthotropic parameter f3* on the large
static and dynamic amplitude response has been investigated for both clamped and simply
supported circular plates under various types of dynamic loads. To the author's knowledge,
there is no available results for the large amplitude response of orthotropic circular plates under
transient loads.

2. MATHEMATICAL FORMULATION

Considering the cylindrically orthotropic material whose axis of orthotropy coincides with
the Z axis of the coordinate system which is the axis of symmetry of the circular plate, the
governing differential eqns [5] can be expressed as

where

( *) h (aW)2V2 _, I/J+- - =0
r rail ar

2 a2 I av =a? +rar' V2 = V2 . V2

f3* =an/all

(I)

(2)

I/J = stress function, which has got the relationship with the inplane forces N, and N8 as

N =Y!., r

h3

D =12alf(f3* _ ".2)

". =- aI2/alf'

(3a)

The constitutive relationship for cylindrically orthotropic plate follows the following relations

By introducing the following nondimensional quantities

p = rIa

W= W/a

~ =i!u (f3* - ".2) . I/J
h.a

(3b)

(4)
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eqns (l) and (2) can be written as

( B*) - (f.l* - 11
2) (oW)2p2 V2 _pr I/J+~ p' ap =0

The boundary conditions in dimensionless form become

(a) Clamped edge
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(5)

(6)

p=l

(b) Simply supported edge

p=l

w=o

oW =0
op

ol/J -p--vl/J=Oop

W=O

o2W oW
Pa;:+ vap=O

P oj, _ "J =0
op

(7)

(8)

(c) Symmetry conditions at the centre

p=o oW =0
op

o3W
--.:3=0op

j, = O.

(9)

3. ANALYSIS

The nonlinear eqns (5) and (6) are linearized using Taylor series[t3]. Expressing one of
the product terms, constituting the nonlinearity, in Taylor series expansion and using the
backward difference scheme, eqns (5) and (6) can be expressed at step J
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2- 2- 2-

+ ~ {A (a W) + B(a W) + C (a W) 1]
1 ap2 1_1 ---apr 1-2 ap2 1-3

(11)

Where (A, B, C) are the coefficients of Taylor series linearization technique and which take the
following value during the initial increment of time

J= I,

A=B=C=O

J=2,

A=2.0

B=C=O

J=3 (12)

A=-2

B = 2.5

C=O.O

J >3

A = 2.5

B = -2.0

C=0.5.

The integration of eqns (10) and (11) is carried out space-wise using chebyshev polynomials
and time wise using Houbolt scheme. A method of solution employing Chebyshev's Theory for
the problem of Nonlinear Analysis of Isotropic Circular Plates subjected to Static and dynamic
loads and the corresponding properties for Chebyshev polynomials have been discussed earlier
by Alwar and Yogendra Nath[12, 13].

The deflection function W(p, T), stress function ;j,(p, T) and load pep, T) can be expressed in
Chebyshev polynomials as

N

W= ~' W,T~(p)
,·0
N

;j, = ~' ;j"T~(p)
,·0
N

P = ~' P,T~(p).
,·0

(13)

where, WN ;j" and P, are the coefficients of chebyshev polynomials. T~(p) is the chebyshev
series in the range 0 E: pE:l and supercript' denotes the first term of the series to be halved.
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Substituting eqn (3) into eqns (10) and (11), it is obtained at any step J.
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Note that inertia term is expressed in the Houbolt scheme in the above eqn (15).
Where,

t
N-I [{ } { }- - ' - - -(2) -(2) -(2)

b,.J -2~ t/t,+i+t/tr-i J AW,.J-I+BW,.J-2+ CW,.J-3

+{ .i(1) + .i(l)} {AW-(I) +BW-(I) +CW-(I) }]'I",+i 'I",-i J ,.J-I ,.J-2 "J-3

(14)

(15)

(16)

(17)

(a, 13, 8, 1} and () are the coefficients of Houbolt scheme for the evaluation of inertia term. The
evaluation procedure is given the Appendix A.

Similarly the boundary and symmetry conditions take the following form

(a) p =1

N
~'- .~ W,T,=O
,-0
N-I

I' JY,(I)T~=0
,-0

(b) p= 1

(18)
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(c) p =0

N

L' W,(n n=O
,=0
N

L' W,(3) T~ = 0
,=0
N

L'~' T, =0.
,=0

(19)

(20)

The derivative coefficients of chebyshev polynomials n have the following recurrence relation

(21)

where superscripts (k + I), (k) denote the order of derivative.
Equations (14) and (15) are the generating equations for the evaluation of the unknown

coefficients W, and ~, of chebyshev series T~.

Using eqn (21), these equations can be expressed in terms of W" W,+I"" ~" ~'+I ... , etc.
Now by equating the coefficients of T~ for r = 0, I, ... N, a set of simultaneous algebraic
equations in terms of Wo, WI, ... WN, iJo, ~Io" • ~N is obtained and which can be expressed in
matrix form

(22)

where,

[&j] = coefficient matrix

{t} = Unknown vector,

{13} =Load vector with inertia term.

Equation (22) is solved without iterations.

4. RESULT AND DISCUSSIONS

Nonlinear static analysis has been carried out for the clamped as well as simply supported
orthotropic circular plates under uniformly distributed load and the influence of {3* on the
deflection has been studied. Three values of {3*, namely {3* =1.0,0.75 and 0.50 are considered
in the present investigation. {3* =1.0 denotes the isotropic case. Figure 1 shows the results for
clamped edge condition. It can be seen that the results for {3* =1.0, isotropic case agrees well
with the results given by Way [15]. This can also be taken as the check on the present analysis.
Figure 2 shows the results for the simply supported edge condition. It can be noted that higher
the value of (3* higher is the value of deflection.

Dynamic analysis has been carried out for three types of dynamic loadings, namely, step
function, sinusoidal pulse and •N' shaped pulse and the influence of (3* on the large amplitude
response has been investigated. Figure 3 shows the results for the clamped edge condition
under a step function load of intensity qa4/Eh 4 =10 for {3* =1.0, 0.75 and 0.50. Similar results
for the simply supported edge condition are plotted in Fig. 4. The results for influence of {3* on
the large amplitude response of a clamped edge plate subjected to sinusoidal and symmetric'N'
shaped loadings are shown in Figs. 5 and 6 respectively. It can be noticed from Figs. ~ that
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Fig. I. Influence of ~. On the nonlinear static deflection of circular plate.

Fig. 2. Inftuence of IJ· on the nonlinear slatic denection of circular plate.
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Fig. 3. Influence of fJ* on the dynamic response of circular plate to step function load.
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Fig. 4. Influence of fJ* on the dynamic response of circular plate to step function load.
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rag. S. Influence of f3* on the dynamic response of circular plate to sine wave pulse.
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Fig. 6. Influence of f3* on the dynamic response of circular plate to •N' wave pulse.
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Fig. 7. Convergence of chebyshev series.

lesser the value of f3* lesser is the dynamic response and maximum response is observed for
f3* = 1.0, which corresponds to the isotropic case.

In the present analysis only seven term expansion of chebyshev series for both the function
Wand ¢, have been considered. The coefficients Wo, WI, W2 ••• W6 are plotted in Fig. 7. It can
be seen that the higher order coefficients W5 and W6 are negligible and therefore a five term
expansion would lead to accurate results, which is very unlikely in the case of conventional
power or trigonometric series.
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APPENDIX A

The following relations as suggested by Houbolt are used to start the recurrence process

(AI)

(A2)
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The initial condition for step function loading are as follows:

1=0

W,.o=o

(aw) =0
aT ,.0 .

Substituting eqn (A3) in eqn (4) it is obtained

Substituting eqns (A3) and (A4) in eqn (AI) and (A2) the fictitious coefficient at negative time step are obtained as

W,._I=P(T) AT~-W,.I

W,._~=6P(T} Ar-8W,.,.
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(A3)

(A4)

(AS)

(A6)

The values of fictitious coefficients W,. _I and W,. _~ as expressed in eqns (AS) and (A6) are substituted in the following
equations to yield the coefficients (a,1J, 8,1/ and nduring the initial and for all increment of time, i.e.

1=1

6
a =p. fJ =8 =1/ =0; ,= -2P(T)

1=2

1=3

2 5 4
a =-;-; Q =-- 8=---. .. = r = 0Ar' " AT~' AT" " ~

1>3

(A7)


